Letter to the Editors

Prefrontal transcranial direct current stimulation (tDCS) changes negative symptoms and functional connectivity MRI (fcMRI) in a single case of treatment-resistant schizophrenia

Dear Editors,

Transcranial direct current stimulation (tDCS) is a neuromodulatory, non-invasive brain stimulation technique that has been investigated in various neuropsychiatric disorders (Nitsche and Paulus, 2011). tDCS studies in patients with schizophrenia revealed an improvement of positive symptoms in single cases (Brunelin et al., 2012b; Rakesh et al., 2013; Shiozawa et al., 2013) as well as in groups of patients compared to controls (Brunelin et al., 2012a). Moreover, imaging techniques have been introduced to investigate effects of tDCS on brain function of neuropsychiatric patients (Halko et al., 2011; Homan et al., 2011; Volpato et al., 2013). To our knowledge, this is the first case study of functional connectivity MRI (fcMRI) after tDCS in a subject diagnosed with schizophrenia with predominantly negative symptoms.

A 19-year old right handed patient participated in this case study after giving his written informed consent. The study was approved by our institutional ethics committee. The patient was diagnosed with paranoid schizophrenia (DSM-IV: 295.30). Prodromal symptoms emerged at the age of 14 years and two years later the patient suffered from auditory hallucinations, paranoia, sleep disturbances and rapid mood changes. He was admitted to our hospital following an intervention of the youth welfare office; at that time symptoms had been present for five years with a nearly symptom-free interval of 1.5 years. Treatment with olanzapine 20 mg/day for 8 weeks showed no relevant psychopathological change and the patient remained bedridden, predominantly showing avolition, lack of impetus, social withdrawal, flattened affect and depressed mood. The antipsychotic medication was continued at stable dose during the subsequent tDCS treatment. The patient underwent tDCS (2 mA, 20 min/day, anode over the left dorsolateral prefrontal cortex [DLPFC], cathode over the contralateral supraorbital field-of-view (FoV): 230 × 230 × 132 mm, number of slices: 76 × 77, field-of-view (FoV): 230 × 230 × 132 mm, number of slices: 44, number of volumes: 180 and SENSE: 1.8 (p reduction, AP). Data processing and statistical analyses were carried out using FSL version 4.17 and AFNI. Preprocessing and post-analyses were performed as previously described (Keeser et al., 2011b). Different scan sessions were compared by a paired sample t-test.

After two weeks of tDCS, there was a considerable improvement in psychopathology. Both positive and negative symptoms decreased, disorganization, flattened affect, lack of concentration and impetus improved. The patient, formerly bedridden most of the day began to ask spontaneously for help and therapeutic assistance. Scores of clinical scales and cognitive tests are shown in Fig. 1A; fMRI data are shown in Fig. 1B.

The reduction of positive symptoms by 37% and of negative symptoms by 25% in our case are in line with the findings of a recent study of tDCS for the treatment of hallucinations in schizophrenia (Brunelin et al., 2012a) with a reduction of 16% in the positive and 12% in the negative dimension of the PANSS after active tDCS.

The reduced functional connectivity in the anterior part of the DMN of our patient may underlie this reduction of depressive and negative symptoms. Recently, it has been shown that prefrontal tDCS with the same electrode configuration used here reduced DMN activity (Pena-Gomez et al., 2012), but increased frontal–parietal functional connectivity (Keeser et al., 2011a; Pena-Gomez et al., 2012). The additional reduction of positive symptoms, however, was surprising as neither anodal tDCS of the left DLPFC nor cathodal tDCS over the right orbitofrontal cortex are supposed to have an impact on symptoms in schizophrenia.

In conclusion, anodal tDCS of the left DLPFC seems to be a promising tool for the treatment of negative symptoms in schizophrenia and may even alter positive symptoms. However, randomized controlled trials are needed for investigating the specific action of tDCS on the symptom spectrum in schizophrenia, using different electrode placements and stimulation protocols.

Conflict of interest

F.P. has received grant/research support fromBrainsway Inc.,Israel and neuroConn GmbH, Ilmenau, Germany.

Acknowledgments

This work has been funded by the FöFoLe grant no. 724 of the Ludwig-Maximilian University Munich to U.P.

References

http://dx.doi.org/10.1016/j.schres.2013.08.043

0920-9964/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

journal homepage: www.elsevier.com/locate/schres
changes connectivity of resting-state networks during fMRI. J. Neurosci. 31 (43), 15284–15293.

1 Both authors contributed equally to this work.
Janusch Blautzik
Institute for Clinical Radiology, Ludwig-Maximilian University Munich,
Germany

Oliver Pogarell
Department of Psychiatry and Psychotherapy,
Ludwig-Maximilian University Munich, Germany

Birgit Ertl-Wagner
Michael Josef Kupka
Maximilian Reiser
Institute for Clinical Radiology, Ludwig-Maximilian University Munich,
Germany

Frank Padberg
Department of Psychiatry and Psychotherapy,
Ludwig-Maximilian University Munich, Germany

26 May 2013